
components compared to the mixing index based on complete random 
mixing theory. The mixing indexes based on complete random mixing 
do not approach unity for any of the three drug components used in this 
study. These9esults suggest that mixing of cohesive powders is a complex 
process and cannot be fully explained by simple theory based on complete 
random mixing. 

The analyses of multicomponent mixing were based on fundamental 
statistical concepts. The mixing index based on standard specifications 
provides satisfactory evaluation of mixing multicomponent cohesive 
powders. The mixing index of Ashton and Valentin (17) may be used to 
evaluate multicomponent mixing systems of the type described in this 
paper, although it has some disadvantages. 

Recently, Wang et al. (2) applied multivariate statistical analysis to 
the mixing process and to a mixture of multicomponent solid particles. 
They used three types of lucite spherical particles which had identical 
properties except color. Since it is an interesting approach for evaluating 
multicomponent mixing, future work directed in this vein using a more 
practical multicomponent system would elucidate the understanding of 
mixing. 

REFERENCES 

(1) Z. T. Chowhan and E. E. Linn, Powder Technol., 24, 237 

(1979). 
(2) R. H. Wang, L. T. Fan, and J. R. Too, ibid., 21,171 (1978). 
(3) L. T. Fan and J. R. Too, ibid., 22,205 (1979). 
(4) D. Buslik, Bull. Am. SOC. Testing Mater., 165,66 (1950). 
(5) K. Stange, Chem. Ing. Tech., 35,580 (1963). 
(6) N. Harnby, Chem. Eng., 214, CE270 (1967). 
(7) P. Cook and J. A. Hersey, Powder Technol., 9,257 (1974). 
(8) P. C. Cook and J. A. Hersey, Austr. J. Pharm Sci., NS3, 49 

(9) J. A. Hersey, P. Cook, M. Smyth, E. A. Bishop, and E. A. Clarke, 
(1974). 

J. Pharm. Sci., 63,408 (1974). 
(10) J. A. Hersey, J. Pharm. Pharmacol., Suppl., 19.168s (1979). 
(11) P. M. C. Lacey, Trans. Znst. Chem. Eng., 21,53 (1943). 
(12) G. Oster and M. Yamamoto, Chem. Reu., 63,257 (1963). 
(13) J. T. Carstensen and M. R. Patel, Powder Technol., 17, 273 

(14) L. T. Fan, S. J. Chen, and C. A. Watson, Ind. Eng. Chem. Process 

(15) K. R. Poole, R. F. Taylor, and G. P. Wall, Trans. Znst. Chem. Eng., 

(16) K. Stange, Chem. Ing. Tech., 26,129 (1954). 
(17) M. D. Ashton and F. H. H. Valentin, Trans. Inst. Chem. Eng., 44, 

(1977). 

Des. Deu., 62,53 (1970). 

42, T305 (1964). 

T166 (1966). 

Mixing of Pharmaceutical Solids 111: Multivariate 
Statistical Analysis of Multicomponent Mixing 

Z. T. CHOWHANX and LI-HUA CHI 
Received November 1,1979, from Syntex Research, Palo Alto, CA 9430 4. Accepted for publication August 12,1980. 

Abstract 0 The multicomponent mixing for cohesive powders was 
evaluated by multivariate statistical methods. Tests were carried out for 
the sampling technique, completely random state and completely seg- 
regated state. Hotelling’s statistics were not helpful in testing the practical 
sampling technique. Comparisons of the mixing indexes based on uni- 
variate and multivariate statistics indicated excellent consistency in 
optimizing mixing time. Neither mixing index approached unity because 
cohesive powders do not reach a completely random state. The multi- 
variate mixing index was smaller than the univariate indexes largely due 
to interparticular forces among small cohesive particles. 

Keyphrases Mixing-of multicomponent cohesive powders, evalua- 
tion of homogeneity using multivariate statistical analysis 0 Pow- 
ders-multicomponent mixing of cohesive powders, evaluation of ho- 
mogeneity using multivariate statistical analysis 0 Dosage forms, de- 
sign-multicomponent mixing of cohesive powders to determine ho- 
mogeneity of mixture, comparison of univariate and multivariate sta- 
tistical analyses 

Theories concerning the state of mixedness of solids 
generally deal with univariate statistical analysis of the 
sample standard deviation and the theoretical standard 
deviation (1-6). However, almost all processes of experi- 
mentation, data collection, and observations are multi- 
variate in nature. Multivariate analysis deals with sum- 
marization, representation, and interpretation of data 
sampled from populations where the variables yield 
measures of more than one characteristic (7-9). In phar- 
maceutical practice, the drug(s) and excipient(s) being 
mixed vary in their particle-size distribution, inter- and 
intraparticular forces, mixing composition, shape, etc. 
From a statistical viewpoint, analysis of heterogeneous 

solid mixtures using the univariate statistical approach 
does not account for the interactions and statistical de- 
pendency of individual components. 

Recently, Wang et al. (10) applied multivariate statis- 
tical analysis to the mixing process and to a mixture of 
multicomponent solid particles. They used three types of 
spherical particles with identical properties except 
color. 

The mixing of three organic carboxylic acids with mi- 
cronized lactose, all cohesive in nature, was studied (11) 
using a cylindrical shear mixer. The results were evaluated 
by the mixing indexes based on univariate statistics. This 
paper analyzes the previous experimental results using 
multivariate statistical methods. Comparisons of the re- 
sults of the mixing indexes based on univariate statistics 
(6) and multivariate statistics (10) indicate excellent 
consistency in optimizing mixing time for mixing multi- 
component cohesive powders. Due to interparticular forces 
among small cohesive particles, the resulting multivariate 
mixing index was smaller than the univariate index of in- 
dividual components. Neither mixing index approached 
unity, indicating that the mixing of cohesive powders is not 
completely random. 

THEORETICAL 

In the univariate normal distribution, measurement of the effect is 
evaluated through independent random events. The problems arising 
in the multivariate populations are mostly straightforward analogies of 
the problems arising in univariate populations. For a single variable, the 
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central limit theorem leads to the univariate normal distribution; for 
several variables, the general limit theorem leads to the multivariate 
normal distribution. The suitable methods of analysis are based mainly 
on the standard operations of matrix algebra. 

For a univariate normal distribution, variable Y was taken from the 
normal distribution N: 

Y - N(p, u2) (Eq. 1) 

where p is the population mean and uz is the population variance. 

mean po, t statistics is used: 
To test if the sample mean x is equal to the hypothetical population 

(Eq. 2) (X - PO) t = (N)1/2 - 
S 

where N is the number of observations in the sample and S is the sample 
standard deviation. 
In the multivariate statistics, a vector random variable Y ,  which is a 

p-element vector, and T2 statistics proposed by Hotelling are used: 

T2 = N(P  - po)'S-l(Y - po) (Eq. 3) 

where P is the mean vector of a sample of N number, S is the sample 
variance-covariance matrix that is the unbiased estimation of the dis- 
persion, and the prime is the transpose of the matrix. 

Multivariate Test of Sampling Technique-In sampling a p-variate 
normal population, it is assumed that: 

y;  - N p h  Z) (Eq. 4) 

Y ;  = [Yll Y l Z  . , . YlPl  (Eq. 5 )  

Y ;  = b21 Yzz . . . YZPl 

or: 

. . . .  . . . .  . . . .  
yN= [YNl YNZ . .  . YNpl 

(Eq. 7) 

where p is the sample mean vector, Z is the variance-covariance matrix, 
and Y; is the p-vector random variable where i = 1,2, . . . N. 

Next, the null hypothesis Ho ( p  = po) is tested against the alternative 
hypothesis H1 ( p  # PO). The most likely estimator of the centroid is an 
unbiased estimator and is given by: 

P = -( 1 N  x Yi)  
N i - 1  

The most likely estimator of the dispersion or variance-covariance matrix 
S is given by: 

(Eq. 9) 

If the Hotelling statistics T2 > T$p,+l), the null hypothesis that the 
mean has not been significantly biased at  level a is rejected. Thus, 
7'$ ,N 1) denotes the upper a! percentage point of the T2 distribution. 

'herejection of the null hypothesis Ho, p = po, indicates that the 
sample mean is significantly different from the population mean. This 
result could be due to improper location and spacing of the spot samples, 
bias during sampling, or a peculiar segregation tendency that favored the 
concentration of one material in some small area. 

Multivariate Test for Completely Random and Completely Seg- 
regated States-The criterion in multivariate analysis is to determine 
if the variance-covariance matrix of the mixture is significantly different 
from that of a completely random state. The test for a completely seg- 
regated state could be performed in a similar fashion. 

Given Y;. Yk, and Y N  as observation vectors of the p + 1 component 
from Np(p ,  Z), the most likely ratio criterion for testing the null hy- 
pothesis Ho: 

Z = 20 (Eq. 10) 

against the alternative hypothesis H1 (Z # ZO), where ZO is the specified 
variance-covariance matrix as given by (12): 

It was shown'(12) that: 

X = -2 In XI (Eq. 12a) 

X = pN(1n N - 1)-N In IBZ;'J + tr (B2;')  (Eq. 126) 

is distributed approximately as a x2 random variable with p(p  + 1)/2 
degrees of freedom when Ho is true. Thus, the null hypothesis is rejected 
at  the significance level a if X > x ~ ( J J ( ~  + 1)/2). 

For the spot sample of size N taken from a completely random mixture, 
the particles in the mixture are expected to be randomly distributed. 
Assume the random variables (XI, Xp . . . Xp+l) for a mixture of ( p  + 1) 
components, where X, is the number of j components occurring among 
the n repetition of the event. Hence, X, = n,, n, = 0, 1, . . ., n, and 

(Eq. 13) x, = - 

where x, denotes the number proportion of type; particles in the mixture. 
The probability of a spot sample to contain n1 particles of type 1, n2 
particles of type 2, and n@+1) particles of type ( p  + 1) was given as the 
probability function: 

x, 
n 

P(X1 = n1, x2 = n z .  . . X@+1) = np+1) 

where: 

P+ 1 

i -  1 
x c i I . 1  

and c, is the fraction concentration of component i in the mixture. In a 
four-component system, nl + nz + n3 + n4 = n and c1 + cz + c3 + c4 = 
1. 

These random variables, XI, X Z ,  . . . X @ + 1 ) ,  with the function given 
above have a multinomial probability distribution that is a generalization 
of the binomial distribution. The mean, variance, and covariance of the 
probability density (13), respectively, are: 

E(X,) = nc, (Eq. 15) 

(Eq. 16) 

(Eq. 17) 

VAR(X,) = dJ(1  - C,) 

COV(Xi, X , )  = -nc,c; 

Hence, for a completely random state, Zr may be expressed as: 
rcl(i - cl) -clcz . . . -clcp 1 

(Eq. 18) 1 -c1cz cz(1 - c z )  . . . -c2cp 
. . .  . . .  . . .  Zr = - 

i i 
-clcp -czcp . . . cp(l-cp) 

In the completely segregated state, particles of the same kind aggregate 
together. The variance-covariance matrix for the completely segregated 
state is: 

VAR(xi) = ci(1- c i )  (Eq. 19) 

(Eq. 20) C O V ( X ~ ,  xj )  = - C i c j  

For a completely segregated state, Z, can be expressed as: 
p l ( i  - cl) -clcz . . . -clcp 1 

(Eq. 21) 
-c1cz cz(1-  cz) . ... . . -czcp 

... . . .  
-cpcz . . . cp(l - c p )  

Multivariate Mixing Index for Multicomponent Mixture-Wang 
et al. (10) proposed a mixing index for a multicomponent mixture that 
can range between 0 and 1, based on the value of the determinant of the 
variance-covariance matrix a t  the completely segregated state and that 
a t  the completely random state: 

(Eq. 22) 

where: 

IS 1 = determinant of sample variance-covariance matrix 
12, I = determinant of variance-covariance matrix at completely 

segregated state 
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0.1062 
0.2916 
0.2346 
0.3576 
0.3690 
0.1440 
0.0702 
0.0852 
0.0828 
0.0696 
0.0036 
0.0066 
0.0027 
0.0036 
0.0027 
0.0057 
0.0045 
0.0033 
0.0039 
0.0042 

0.0272- 
0.0332 
0.0510 
0.0910 
0.1474 
0.1446 
0.0134 
0.0212 
0.0154 
0.0156 
0.0009 
0.0019 
0.0482 
0.0009 
0.0001 
0.0010 
0.0128 
0.0113 
0.0003 
0.0028, 

'0.408 
0.2832 
0.2664 
0.4044 
0.4836 
0.1392 
0.1596 
0.1752 
0.144 
0.0408 
0.0204 
0.0186 
0.0138 
0.0216 
0.0126 
0.0264 
0.0198 
0.0270 
0.3855 

-0.0468 

Table I-Sample Mean and Standard Deviation 

Mixing 
Number Time, min Mean Recovery f SD 

1 1 I 0.1535 f 0.1583 
I1 0.0926 f 0.1233 

111 0.0320 f 0.04507 
15 

25 

~~ 

I 0.1237 f 0.0266 
Ii 0.0640 2 0.0305 

111 0.0224 f 0.0104 
I 0.1182 f 0.0058 
I1 0.0594 f 0.0060 

111 0.0199 f 0.0018 
35 

45 

55 

65 

I 0.1210 f 0.0058 
I1 0.0602 f 0.0051 

111 0.0203 f 0.0024 
I 0.1208 f 0.0015 
I1 0.0607 f 0.0023 

111 0.0205 f 0.0011 
I 0.1192 f 0.0016 
I1 0.0601 f 0.0019 

111 0.0202 f 0.0018 
I 0.1205 f 0.0017 
I1 0.0601 f 0.0033 

111 0.0201 f 0.0011 

with a sample mean of: 

- Y - ' ( N  C Yi ) = - ; o ( [ ]  0.1062 

0.0272 N i-1 

8 75 I 0.1178 f 0.0023 
11 0.0596 f 0.0029 

111 0.0196 f 0.00048 
I 0.1179 f 0.0043 

11 0.0606 f 0.0033 
111 0.0200 f 0.0011 

9 90 

0.2832 0.0468 0.1535 
+ 0.2916 + . * *  0.0042 [ 0.033d [ 0.0021) = [:::El (Eq. 26) 

12, I = determinant of variance-covariance matrix at completely 
random state The sample variance-covariance matrix is: 

(Eq. 27a) RESULTS AND DISCUSSION 

The experimental results of the multicomponent mixing (11) are 
summarized in Table I. As the mixing time increased, the mean compo- 
sition of the individual components became closer to the theoretical 
values until plateau values were reached. The standard deviations de- 
creased up to 45 min of mixing time, after which the standard deviation 
increased or decreased depending on the individual components. 

To test for the sampling technique, the null hypothesis Ho: 

(Eq. 276) 1 20 
19 i-1 

s = - (Yi - Y)(Yi  - P)' 

0.2505 X lo-' 0.1529 X lo-' 0.3910 X 

S = 0.1529 X 10-1 0.1520 X 10-I 0.4126 X 10-2 
0.3910 X 0.4126 X 10-l 0.2032 X 

(Eq. 27c) 
1 
1 0.1040 X lo3 -0.112 X loD 0.2733 X lo2' 

-0.1120 X lo3 0.2673 X lo3 -0.3271 X lo2 

1 
0.2733 X 10' -0.3271 X lo3 0.1104 X 104 

[F]  = 14 0.02 (Eq. 23) 

was tested against the alternative hypothesis HI: [F] f [i] (Eq. 28) 

(Eq. 29a) 

For the first time point: 

0.0320 0.0320 
(Eq. 25a) 

(Eq. 296) 

T2 = 20 X [0.0335 0.0326 0.01201 S-' 0.0326 (Eq. 29c) 

(Eq. 29d) T2 = 20 X 0.0811 

T2 = 1.6217 (Eq. 29e) 

T&5(3,19) = 10.729 > 1.6217 (Eq. 30) 

Thus, Ho was accepted. 
Table I1 gives the'results of the sampling technique test. Comparison 

of the data in Tables I and I1 indicates that the smaller the difference in 
the mean vector from the initial composition, the larger the Hotelling 
statistic value is. As the mixing time increased, the Hotelling statistic 

I:::::] 0.2832 [ 0.0331 
Yz.: 0.2916 (Eq. 256) 

(Eq. 25c) 
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Table 11-Test of the Sampling Technique 

Mixing 
Time, 
min 

1 

15 

25 

35 

45 

55 

65 

75 

90 

Hotelling's Acceptance of 
T2 Ho Variance-Covariance Determinant 

1.6217 

1.1159 

3.0466 

0.8262 

8.4767 

5.2375 

1.8884 

31.2681 

7.5040 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

N O  

Yes 

0.2505 X 10-l 
0.1529 X 10-1 
0.3910 X 
0.7064 X 
0.7618 X 
0.1843 X 
0.3323 X 
0.2648 X 
0.5387 X 
0.3397 X 
0.2159 X 
0.7391 X 
0.2319 X 

-0.4899 X 
0.5543 X loe6 
0.2608 X 

-0.3062 X 
0.6129 X 
0.2750 X 
0.3027 X 

-0.8375 X 
0.5323 X 
0.4861 X 
0.9437 X 
0.1832 X 
0.4772 X 
0.1489 X 

0,1529 X lo-' 
0.1520 X lo-' 
0.4126 x 
0.7618 X 
0.9299 X 
0.2036 X 
0.2648 X 
0.3584 X 
0.4664 X 
0.2159 X 
0.2563 X 
0.1849 X 

-0.4899 X 
0.5282 X 
0.8504 x 

-0.3062 X 
0.3571 X 

-0.7514 X 
0.3027 X 
0.1077 X lo-* 

-0.2977 X 
0.4861 X 
0.8507 X 
0.8758 X 
0.4772 X 
0.1092 X 
0.2353 X 

0.3910 X 10W2 
0.4126 x 
0.2032 X 
0.1843 X 
0.2036 X 
0.1078 X 
0.5387 X 10-5 
0.4664 X 
0.3148 X 
0.7391 X 
0.1849 X 
0.599 X 

0.5543 X 
0.8504 X 
0.1304 X 
0.6129 X 

-0.7514 X 
0.3552 X 

-0.8375 X 
-0.2977 X 

0.1215 X 10-5 
0.9437 X 
0.8758 X 
0.2293 X 
0.1489 X 
0.2353 X 
0.1251 X 

0.1333 X 

0.455 X lo-" 

0.111 x 10-14 

0.1496 X 

0.1263 X 

0.3022 x 

0.3558 x 

0.1343 X 

0.1295 X 

value increased so that a value of 31.268 was obtained a t  75 min. This 
finding resulted in the rejection of the null hypothesis, indicating that 
the sample mean is not equal to the theoretical composition. However, 
the data a t  75 min of mixing indicated that the sample mean was very 
close to the theoretical mean. If it is assumed t h a t  

Y 1 =  Y 2  = Y 3 . .  . Y Z O  (Eq. 31) 

Y; = P (Eq. 32) 

This leads to a variance-covariance of zero. Hence, T2 is infinitely large 
and the Hotelling statistic T 2  would be >>> T&n-l). Hence, the null. 
hypothesis ( p  = pa) would be rejected a t  any given po except when po = 
P. 

This procedure leads to the conclusion that when there is small vari- 
ance between 20 samples, the small differences between the sample mean 
vector and the theoretical mean (PO) would tend to reject the null hy- 
pothesis when it should accept it. This result also could be due to the 
interactions between the mix components and the mixer, which were not 
accounted for in this analysis. 

Thus, the Hotelling statistics is sensitive to small errors introduced 
in the theoretical composition of the three components during weighing, 
which could lead to false rejection of the best time points in evaluating 
powder homogeneity. 

At early time points, the significant differences between the sample 
mean and theoretical mean were offset by the large value of the deter- 
minant of the variance-covariance matrix, leading to acceptance of the 
null hypothesis. 

then: 

Table 111-Test of Completely Segregated and Completely 
Random State 

Mixing 
Time, 
min 

1 
15 
25 
35 
45 
55 
65 
75 
90 

Statistic X Statistic X 
Rejection Segregated Rejection 

Random State of Ho State of Ho 
0.548 X 1013 Yes 0.9114 X lo2 Yes 

0.2585 X 10l2 Yes 0.2846 X lo3 Yes 
0.9852 X 1Olo Yes 0.4504 X lo3 Yes 
0.9493 X 1Olo Yes 0.4444 X lo3 Yes 
0.1520 X 1O1O Yes 0.5399 X lo3 Yes 
0.2194 X 1O1O Yes 0.5225 X lo3 Yes 
0.2286 X 1O'O Yes 0.5192 X lo3 Yes 
0.1883 X 1O'O Yes 0.5847 X lo3 Yes 
0.3710 X 1O'O Yes 0.4934 X lo3 Yes 

T o  test for the completely random state after 1 rnin of mixing, Eq. 18 
gives: 

[ 0.12 X 0.88 -0.12 X 0.06 -0.12 X 0.021 
-0.06 X 0.12 0.06 X 0.94 -0.06 X 0.02 
-0.02 X 0.12 -0.06 X 0.02 0.02 X 0.98 

4.275 X 10" 
2, = 

(Eq. 33a) 

1 2.47 x 10-13 -1.68 x 10-14 -5.61 x 10-15 
-1.68 X 10-14 1.32 X -2.81 X (Eq. 336) 
-5.61 x 10-15 -2.81 x 10-15 4.58 x 1 0 4 4  

To investigate if a completely random state was reached after 1 rnin of 
mixing at 60 rpm, the null hypothesis Ho is tested: 

1 2.47 x 10-13 -1.68 x 10-14 -5.61 x 10-15, 

-5.61 x 10-15 -2.81 x 10-15 4.58 x 10-14 
2 = 2, = -1.68 X 10-14 1.32 X 10-13 -2.81 X 10-15 (Eq. 34) [ 
against the alternative hypothesis HI ( 2  # &). 

From Eq. 126: 

X = 3 X 20 X (In 20 - 1) - 20 X In IB2;'l + t r ( B 2 ; ' )  (Eq. 35) 
and: 

(Eq. 36) 

since: 

X = 0.548 X 1013 > 12.6 (Eq. 37) 

the null hypothesis is rejected, and the mixture did not attain a com- 
pletely random state after 1 min of mixing a t  a significance level of 
0.05. 

T o  test for the completely segregated state from Eqs. 19 and 20: 

(Eq. 38) 1 0.1056 -0.0072 -0.0024 
2, = -0.0072 0.0564 -0.0012 

-0.0024 -0.0012 0.0196 I 
To investigate if the mixture remained completely segregated after 
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Table IV-Comparisons between Univariate and  Multivariate 
Mixing Indexes 

~ ~ ~ 

Mixing 
Time, 
min Univariate (Eq. 42) Multivariate (Eq. 22) 

1 

15 

25 

35 

45 

55 

65 

75 

90 

0.61 
0.64 
0.66 
0.71 
0.72 
0.74 
0.79 
0.80 
0.83 
0.79 
0.81 
0.81 
0.85 
0.84 
0.85 
0.845 
0.85 
0.83 
0.84 
0.83 
0.85 
0.83 
0.83 
0.88 
0.80 
0.83 
0.85 

0.2901 

0.4606 

0.5619 

0.5586 

0.6094 

0.6005 

0.5988 

0.6319 

0.5852 

1 min of mixing, the null hypothesis Ho is tested: 

(Eq. 39) 

(Eq. 40) 

(Eq. 41) 

I 0.1056 -0.0072 -0.0024 
8 = 8, = -0.0072 0.0564 -0.0012 

-0.0024 -0.0012 0.0196 

X = 0.9114 X lo2 

I 
against the alternative hypothesis H1 (Z # Zs). 

Equation 12b gives: 

since: 

X = 0.914 X lo2 > 12.6 

The null hypothesis Ho is rejected. 
Table I11 gives the results of these two states as a function of mixing 

time. At early mixing times, the value of the X statistics for testing 
complete randomness decreased. At later mixing times, a major change 
in X statistics did not occur, indicating that the powder system used in 
this study was unable to reach a completely random state. This finding 
confirms earlier (11,14) results that cohesive powders do not reach a state 
of complete randomness. 

For testing the segregation state, the X statistics also increased at  the 
initial mixing times. After 1 min of mixing, segregation tendency was not 
observable (Table 111). Wang et al. (10) showed that large spherical 
particles segregated after 2 min of mixing. Thus, the segregation tendency 
is largely dependent on the physical properties of the system. 

The results of the mixing index of Ashton and Valentin (6) were re- 
ported previously (11). This mixing index based on univariate statistical 
analysis (Eq. 42) is similar to that proposed by Wang et al. (lo), which 
is based on multivariate analysis (Eq. 22): 

where of S2, and o: are the variances in the initial, intermediate, and 
ultimate random conditions, respectively. 

Comparisons of the mixing indexes based on univariate and multi- 
variate analyses are given in Table IV. The powders in the multicompo- 
nent heterogeneous system interact with each other and are affected by 
other components before an optimized mixed state is reached. The in- 
terparticular dependency among the particles of each component was 
considered through the variance-covariance matrix, and the results were 
a scalar quantity instead of the three individual quantities. Due to the 
interparticular forces among the small cohesive particles, the resulting 
multivariate mixing index is expected to be smaller than the univariate 
mixing indexes of individual components. The values of both mixing 
indexes increased with mixing time until there was a very small change. 
The results suggest that an optimized mixing time was -45-55 min, which 
is consistent using both approaches. 

REFERENCES 

(1) P. M. C. Lacy, Trans.  Inst. Chern. Eng., 21.53 (1943). 
(2) L. T. Fan and R. H. Wang, Powder Technol., 11,27 (1975). 
(3) K. Stange, Chern. Ing. Tech., 35,580 (1963). 
(4) Ibid., 26,129 (1954). 
(5) K. R. Poole, R. F. Taylor, and G. P. Wall, Trans. Inst. Chern. Eng., 

(6) M. D. Ashton and F. H. H. Valentin, ibid., 44, T166 (1966). 
(7) D. F. Morrison, “Multivariate Statistical Methods,” McGraw-Hill, 

New York, N.Y., 1976. 
(8) N. H. Timm, “Multivariate Analysis with Application in Edu- 

cation and Psychology,” Brooks/Cole Publishing, Monterey, Calif., 
1975. 

(9) C. Y. Kramer, “A First Course in Methods of Multivariate 
Analysis,” Virginia Polytechnic Institute, Blacksburg, Va., 1972. 

(10) R. H. Wang, L. T. Fan, and J. R. Too, Powder Technol., 21,171 
(1978). 

(11) Z. T. Chowhan, E. E. Linn, and L.-H. Chi, J.  Pharrn. Sci., 70,243 
(1981). 

(12) T. W. Anderson, “An Introduction to  Multivariate Statistical 
Analysis,” Wiley, New York, N.Y., 1958. 

(13) M. Fisz, “Probability Theory and Mathematical Statistics,” 
Wiley, New York, N.Y., 1963, 

(14) Z. T. Chowhan and E. E. Linn, Powder Technol., 24, 237 
(1979). 

42, T305 (1964). 

Journal of Pharmaceutical Sciences I 251 
Vol. 70, No. 3, March 1981 


